On a multivariate population balance model to describe the structure and composition of silica nanoparticles
نویسندگان
چکیده
The aim of this work is to present the mathematical description of a detailed multivariate population balance model to describe the structure and composition of silica nanoparticles. Silica nanoparticles are formed by the interaction of silicic acid monomers (Si(OH)4)in the gas-phase. A detailed numerical study of a stochastic particle algorithm for the solution of the multidimensional population balance model is presented. Each particle is described by its constituent primary particles and the connectivity between these primaries. Each primary, in turn, has internal variables that describe its chemical composition, i.e., the number of Si, free O and OH units. A particle undergoes transformations due to different particle processes such as surface reactions, coagulation, sintering, and intra-particle reactions. The algorithms used to solve the population balance equations and to couple the population balance model to gas-phase chemistry are described. Numerical studies are then performed for a number of functionals calculated from the model to establish the convergence with respect to the numerical parameter that determines the number of computational particles in the system. A brief numerical investigation of convergence with respect to the splitting time step has also been undertaken. The computational times (for runs that provide acceptable statistical errors) are determined to be sufficiently small to facilitate the application of this detailed multidimensional model to simulate industrial scale systems.
منابع مشابه
An Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application
In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...
متن کاملAn Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application
In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...
متن کاملRice Straw Ash-A Novel Source of SilicaNanoparticles
In this study chemical method of dissolution-Precipitation was applied to produce amorphous silica nanoparticles from rice straw ash (RSA), the waste material of rice cultivation. The morphology, particle size, structure and area of specific surface of synthesized amorphous silica nanoparticles were evaluated using transmission electron microscopy (TEM), X-ray diffraction analysis (XRD) and BET...
متن کاملSynthesis and Characterizations of Silica Nanoparticles by a New Sol-Gel Method
Silica nanoparticles were synthesized by chemical methods from tetraethylorthosilicate (TEOS), polyethylene glycol 5% and hydrochloric acid 0.001 N. The sol-gel process was applied for the preparation of nano silica gel. This method is hydrolysis and condensation reactions of TEOS as precursor of silica. The optimal synthesis conditions for the preparation of silica nanoparticles were obtained ...
متن کاملAmino Functionalized Silica Coated Fe3O4 Magnetic Nanoparticles as a Novel Adsorbent for Removal of Pb2+ and Cd2+
The present study synthesizes a novel adsorbent by coating Fe3O4 magnetic nanoparticles with amino functionalized mesoporous silica. The FTIR spectrums indicate that silica has been successfully coated on the surface of Fe3O4 and 3-aminopropyl tri methoxysilane compound have been grafted to the surface of silica-coated Fe3O4. The XRD analysis shows the presence of magnetite phase with cubic spi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Chemical Engineering
دوره 43 شماره
صفحات -
تاریخ انتشار 2012